Part Number Hot Search : 
4HC163 74HC42 SA9102F 48S03 ADUM1280 FR150G 24C08 2SB1400
Product Description
Full Text Search
 

To Download IRFG6110 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 90436F
POWER MOSFET THRU-HOLE (MO-036AB)
Product Summary
Part Number IRFG6110 IRFG6110 RDS(on) 0.7 1.4
IRFG6110 JANTX2N7336 JANTXV2N7336 REF:MIL-PRF-19500/598 100V, Combination 2N-2P-CHANNEL
HEXFET MOSFET TECHNOLOGY
(R)
ID CHANNEL 1.0A N -0.75A P
HEXFET(R) MOSFET technology is the key to International
Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.
MO-036AB
Features:
n n n n n n
Simple Drive Requirements Ease of Paralleling Hermetically Sealed Electrically Isolated Dynamic dv/dt Rating Light-weight
Absolute Maximum Ratings (Per Die)
Parameter
ID @ VGS = 10V, TC = 25C ID @ VGS = 10V, TC = 100C IDM PD @ TC = 25C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction Storage Temperature Range Lead Temperature Weight For footnotes refer to the last page
N-Channel
1.0 0.6 4.0 1.4 0.011 20 75 -- -- 5.5
P-Channel
-0.75 -0.5 -3.0 1.4
0.011
Units A
W
W/C
20 75 -- -- -5.5 -55 to 150
V mJ A mJ V/ns
o
C
300 (0.63 in./1.6 mm from case for 10s) 1.3 (Typical)
g
www.irf.com
1
04/16/02
IRFG6110
Electrical Characteristics For Each N-Channel Device @ Tj = 25C (Unless Otherwise Specified)
Parameter
BVDSS Drain-to-Source Breakdown Voltage
Min
100
Typ Max Units
-- 0.13 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 10 -- -- 0.7 0.8 4.0 -- 25 250 100 -100 15 7.5 7.5 20 25 40 40 -- V V/C V S( ) A
Test Conditions
VGS = 0V, ID = 1.0mA Reference to 25C, ID = 1.0mA VGS = 10V, ID = 0.6A VGS = 10V, ID = 1.0A VDS = VGS, ID = 250A VDS > 15V, IDS = 0.6A VDS= 80V, VGS= 0V VDS = 80V, VGS = 0V, TJ =125C VGS = 20V VGS = -20V VGS =10V, ID = 1.0A, VDS = 50V VDD = 50V, ID = 1.0A, VGS =10V, RG = 7.5
BV DSS /T J Temperature Coefficient of Breakdown -- Voltage RDS(on) Static Drain-to-Source On-State -- Resistance -- VGS(th) Gate Threshold Voltage 2.0 g fs Forward Transconductance 0.86 IDSS Zero Gate Voltage Drain Current -- -- IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (`Miller') Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance -- -- -- -- -- -- -- -- -- --
nA
nC
ns
nH
Measured from drain lead (6mm/ 0.25in. from package) to source lead (6mm/0.25in. from package) VGS = 0V, VDS = 25V f = 1.0MHz
Ciss Coss Crss
Input Capacitance Output Capacitance Reverse Transfer Capacitance
-- -- --
180 82 15
-- -- --
pF
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min Typ Max Units
-- -- -- -- -- -- -- -- -- -- 1.0 4.0 1.5 200 0.83
Test Conditions
A
V nS nC Tj = 25C, IS = 1.0A, VGS = 0V Tj = 25C, IF = 1.0A, di/dt 100A/s VDD 50V
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
RthJC RthJA Junction-to-Case Junction-to-Ambient
Min Typ Max Units
-- -- -- -- 17 90
C/W
Test Conditions
Typical socket mount
Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page
2
www.irf.com
IRFG6110
Electrical Characteristics For Each P-Channel Device @ Tj = 25C (Unless Otherwise Specified)
Parameter
BVDSS Drain-to-Source Breakdown Voltage
Min
-100
Typ Max Units
-- -0.098 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 10 -- -- 1.4 1.73 -4.0 -- -25 -250 -100 100 15 7.0 8.0 30 60 40 40 -- V V/C V S( ) A nA
Test Conditions
VGS = 0V, ID = -1.0mA Reference to 25C, ID = -1.0mA VGS = -10V, ID = -0.5A VGS = -10V, ID =- 0.75A VDS = VGS, ID = -250A VDS > -15V, IDS = -0.5A VDS= -80V, VGS= 0V VDS = -80V, VGS = 0V, TJ =125C VGS = - 20V VGS = 20V VGS = -10V, ID = -0.75A, VDS = -50V VDD = -50V, ID = -0.75A, VGS = -10V, RG = 7.5
BV DSS /T J Temperature Coefficient of Breakdown -- Voltage RDS(on) Static Drain-to-Source On-State -- Resistance -- VGS(th) Gate Threshold Voltage -2.0 g fs Forward Transconductance 0.67 IDSS Zero Gate Voltage Drain Current -- -- IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (`Miller') Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance -- -- -- -- -- -- -- -- -- --
nC
ns
nH Measured from drain lead (6mm/ 0.25in. from package) to source . lead (6mm/0.25in. from package) pF VGS = 0V, VDS = -25V f = 1.0MHz
C iss Coss Crss
Input Capacitance Output Capacitance Reverse Transfer Capacitance
-- -- --
200 85 30
-- -- --
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min Typ Max Units
-- -- -- -- -- -- -- -- -- -- -0.75 -3.0 -5.5 200 9.0
Test Conditions
A
V nS nC Tj = 25C, IS = -0.75A, VGS = 0V Tj = 25C, IF = -0.75A, di/dt -100A/s VDD -50V
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
R thJC RthJA Junction-to-Case Junction-to-Ambient
Min Typ Max Units
-- -- -- -- 17 90
C/W
Test Conditions
Typical socket mount
For footnotes refer to the last page
www.irf.com
3
IRFG6110 N-Channel Q1,Q3
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
4
www.irf.com
IRFG6110 N-Channel Q1,Q3
13a & b
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
www.irf.com
5
IRFG6110 N-Channel Q1,Q3
V DS VGS RG RD
D.U.T.
+
-V DD
10V
Pulse Width 1 s Duty Factor 0.1 %
Fig 10a. Switching Time Test Circuit
VDS 90%
10% VGS
Fig 9. Maximum Drain Current Vs. Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
6
www.irf.com
IRFG6110 N-Channel Q1,Q3
15V
VDS
L
D R IV E R
RG
20V 10V
D .U .T.
IA S tp
+ V - DD
A
0 .01
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D S S tp
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
10V 12V
.2F .3F
10 V
QGS VG QGD
10V
VGS
3mA
D.U.T.
+ V - DS
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
www.irf.com
7
IRFG6110 P-Channel Q2,Q4
Fig 14. Typical Output Characteristics
Fig 15. Typical Output Characteristics
Fig 16. Typical Transfer Characteristics
Fig 17. Normalized On-Resistance Vs. Temperature
8
www.irf.com
IRFG6110 P-Channel Q2,Q4
26
Fig 18. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 19. Typical Gate Charge Vs. Gate-to-Source Voltage
Fig 20. Typical Source-Drain Diode Forward Voltage
Fig 21. Maximum Safe Operating Area
www.irf.com
9
IRFG6110 P-Channel Q2,Q4
V DS VGS RG RD
D.U.T.
+
-10V
Pulse Width 1 s Duty Factor 0.1 %
Fig 23a. Switching Time Test Circuit
td(on) tr t d(off) tf
VGS 10%
90%
Fig22. Maximum Drain Current Vs. Case Temperature
VDS
Fig 23b. Switching Time Waveforms
Fig 24. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
10
www.irf.com
-
V DD
IRFG6110 P-Channel Q2,Q4
VDS
L
RG
D .U .T.
IA S
VD D A D R IV E R
-20V -10V
tp
0.0 1
15V
Fig 25a. Unclamped Inductive Test Circuit
IAS
Fig 25c. Maximum Avalanche Energy Vs. Drain Current
tp V (BR)DSS
Fig 25b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
-10V 12V
.2F .3F
-10V
QGS VG QGD
VGS
-3mA
Charge
IG
ID
Current Sampling Resistors
Fig 26a. Basic Gate Charge Waveform
Fig 26b. Gate Charge Test Circuit
www.irf.com
+
D.U.T.
-
VDS
11
IRFG6110
Footnotes:
Repetitive Rating; Pulse width limited by
maximum junction temperature.
VDD = 25V, starting TJ = 25C, L= 150mH,
Peak IL = 1.0A, VGS = 10V
Pulse width 300 s; Duty Cycle 2% VDD = - 25V, starting TJ = 25C, L= 266mH,
Peak IL = - 0.75A, VGS = -10V
ISD 1.0A, di/dt 75A/s,
VDD 100V, TJ 150C
ISD - 0.75A, di/dt - 75A/s,
VDD -100V, TJ 150C
Case Outline and Dimensions -- MO-036AB
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice.0402
12
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRFG6110

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X